In light of the COVID-19 pandemic, patients were required to manually input their daily oxygen saturation (SpO2) and pulse rate (PR) values into a health monitoring system-unfortunately, such a process trend to be an error in typing. Several studies attempted to detect the physiological value from the captured image using optical character recognition (OCR). However, the technology has limited availability with high cost. Thus, this study aimed to propose a novel framework called PACMAN (Pandemic Accelerated Human-Machine Collaboration) with a low-resource deep learning-based computer vision. We compared state-of-the-art object detection algorithms (scaled YOLOv4, YOLOv5, and YOLOR), including the commercial OCR tools for digit recognition on the captured images from pulse oximeter display. All images were derived from crowdsourced data collection with varying quality and alignment. YOLOv5 was the best-performing model against the given model comparison across all datasets, notably the correctly orientated image dataset. We further improved the model performance with the digits auto-orientation algorithm and applied a clustering algorithm to extract SpO2 and PR values. The accuracy performance of YOLOv5 with the implementations was approximately 81.0-89.5%, which was enhanced compared to without any additional implementation. Accordingly, this study highlighted the completion of PACMAN framework to detect and read digits in real-world datasets. The proposed framework has been currently integrated into the patient monitoring system utilized by hospitals nationwide.
translated by 谷歌翻译
Kratom(KT)通常发挥抗抑郁药(AD)效应。但是,评估哪种形式的KT提取物具有类似于标准AD氟西汀(FLU)的AD特性仍然具有挑战性。在这里,我们采用了称为ANET的基于自动编码器(AE)的异常检测器,以衡量响应KT休假提取物和AD流感的小鼠局部场电位(LFP)特征的相似性。响应KT糖浆的功能与响应AD流感的人的相似性最高,为85.62 $ \ pm $ 0.29%。这一发现表明,将KT糖浆用作抑郁剂治疗的替代物质的可行性比KT生物碱和KT水(这是本研究中的其他候选者)。除了相似性测量外,我们还将ANET用作多任务AE,并评估了与不同KT提取物和AD流感效果相对应的多级LFP响应的性能。此外,我们分别以定性和定量为T-SNE投影和最大平均差异距离,可视化LFP响应之间的潜在特征。分类结果报告的准确性和F1得分为79.78 $ \ pm $ 0.39%和79.53 $ \ pm $ 0.00%。总而言之,这项研究的结果可能有助于治疗设计设备进行替代物质概况评估,例如在现实世界应用中基于KRATOM的形式。
translated by 谷歌翻译